Март 2016
Как известно, работа свинцово-кислотной аккумуляторной батареи основана на возникновении разности потенциалов между двумя электродами, погруженными в электролит. Активное вещество отрицательного катода – чистый свинец, а положительного анода – двуокись свинца. В системах резервного и автономного питания могут применяться аккумуляторы, изготовленные по разным технологиям: обслуживаемые наливные, герметичные гелевые или AGM. Вне зависимости от технологии, химические процессы, протекающие в свинцово-кислотных аккумуляторах, схожи:
 | - При разряде через пластины проходит электрический ток, и пластины покрываются серным окислом (сульфатом) свинца. Сульфат свинца оседает на пластинах в виде пористого налета.
- При заряде идет обратная реакция восстановления активного вещества, на отрицательных пластинах накапливается чистый свинец, а на положительных – пористая масса окиси свинца.
К сожалению, полное восстановление активного вещества в каждом новом цикле разряда-заряда невозможно.При эксплуатации неизбежно происходит так называемое старение аккумулятора, то есть постепенная потеря емкости – вплоть до допустимого предела эксплуатации, обычно принимаемого по снижению емкости до 60% от исходной. В идеальных условиях реальный срок эксплуатации аккумуляторов в буферном режиме может приближаться к номинальному. |
Процесс старения аккумулятора может значительно ускориться в силу действия следующих разрушающих процессов:
- Сульфатация пластин;
- Коррозия пластин и осыпание активной массы;
- Испарение электролита или так называемое «высыхание» аккумулятора;
- Стратификация электролита (характерно только для наливных АКБ).
Сульфатация пластин
 | Когда аккумулятор разряжен, рыхлая активная масса превращается в твердые микрокристаллы сульфата свинца. Если зарядку аккумулятора не производить длительное время, микрокристаллы укрупняются, налет уплотняется и перекрывает доступ электролита к пластинам, что делает зарядку аккумулятора невозможной. Факторы, повышающие риск сульфатации: - длительное хранение в разряженном состоянии;
- эксплуатация при высокой температуре окружающей среды;
- хронический недозаряд аккумулятора в циклическом режиме (необходим 100% заряд не реже чем раз в месяц);
- экстремально глубокий разряд аккумулятора.
Сульфатация пластин может быть частично устранена специальными режимами заряда АКБ. |
Коррозия и осыпание активного вещества
| При коррозии чистый свинец решетки пластин, взаимодействуя с водой, окисляется в окись свинца. Окись свинца хуже проводит электроток к активному веществу намазки пластин, повышает внутреннее сопротивление и уменьшает стойкость аккумулятора к высоким токам разряда. На положительных пластинах коррозия ослабляет сцепление решетки с активным веществом. Кроме того, само активное вещество положительной пластины постепенно теряет прочность. При каждом цикле намазной слой пластины меняет состояние из объемной массы микрокристаллов окиси свинца в жесткую кристаллическую структуру сульфата свинца. Чередование сжатия и расширения снижает физическую прочность намазного слоя, что в сочетании с ослаблением сцепления приводит к сползанию и осыпанию активного вещества на дно аккумулятора. Коррозия и накопление отслоившегося активного вещества могут приводить к деформации пластин аккумулятора и, при наихудшем развитии событий, к их замыканию. |
Факторы, повышающие риск коррозии и осыпания активной массы:
- заряд слишком высоким напряжением;
- заряд недостаточным током – то есть долгое нахождение под высоким напряжением в фазе наполнения;
- слишком долгое нахождение в фазе абсорбции («перезаряд»);
- заряд аккумулятора слишком большим током;
- ускоренный разряд аккумулятора слишком большим током.
Осыпание (сползание) активной массы электролита – необратимое явление. Самое опасное последствие сползания активной массы – замыкание пластин.
Испарение электролита
| При разряде на положительной пластине аккумулятора из воды образуется кислород. В нормальных условиях поддерживающего заряда кислород рекомбинирует на отрицательной пластине аккумулятора с водородом, восстанавливая исходное количество воды в электролите. Но диффузия кислорода в сепараторе затруднена, поэтому процесс рекомбинации не может быть 100% эффективным. Снижение доли воды изменяет зарядные характеристики аккумулятора и при определенном пороге делает заряд полностью невозможным. Факторы, повышающие риск «высыхания аккумулятора»: - эксплуатация при высокой температуре окружающей среды;
- заряд слишком большим током или напряжением;
- слишком высокое напряжение поддерживающего заряда - «перезаряд» аккумулятора.
|
Испарение электролита – необратимое явление для гелевых и AGM аккумуляторов. Основная причина высыхания, особенно для AGM – «перезаряд» аккумуляторов.
Терморазгон и термический пробой аккумуляторов
Старение аккумулятора в силу перечисленных выше процессов происходит ускоренными темпами, однако все же достаточно медленно и часто незаметно.
В отдельную категорию можно выделить эффект терморазгона, при котором разрушение происходит в сжатые сроки и наблюдается явным образом в виде термического пробоя.
Рекомбинация газов в герметичной батарее – это химический процесс с выделением тепла. Когда рекомбинация идет при правильных значениях напряжения и тока заряда, нагрев не создает проблем. Однако, когда батарея перезаряжена, внутренняя температура повышается быстрее, чем батарея может быть охлаждена снаружи. Повышение температуры уменьшает зарядное напряжение, что в стадии абсорбции приводит к одновременному увеличению тока. Это в свою очередь вновь повышает температуру.
Запускается самоподдерживающийся цикл увеличения тока и тепловыделения, приводящий, при худшем развитии ситуации, к деформации решеток и внутреннему короткому замыканию с необратимым разрушением аккумулятора.
Факторы, повышающие риск появления эффекта терморазгона:
- прерывистый или «пульсирующий» заряд из-за нестабильного внешнего источника энергии или некачественного зарядного устройства;
- слишком долгое нахождение в фазе абсорбции – «перезаряд»;
- плохой теплоотвод или повышенная температура окружающей среды.
Специфика разрушающих процессов в цепочке АКБ
| Нетрудно заметить, что при заряде отдельного аккумулятора все факторы риска устранимы обеспечением правильных условий эксплуатации и зарядного алгоритма. Однако в системах резервного энергоснабжения редко используется менее двух аккумуляторов. При параллельно-последовательном соединении зарядное устройство «видит» значения зарядного тока и напряжения только на оконечных клеммах, поэтому на отдельных аккумуляторах напряжения могут серьезно отличаться от рекомендуемых значений. Аккумулятор, имеющий более высокий уровень саморазряда (больший ток утечки), может вызывать перезаряд последовательно соединенных с ним элементов и неполный заряд параллельно соединенных с ним элементов. Перезаряд и недозаряд повышают риск проявления практически всех разрушающих процессов. Поэтому для уменьшения опасности все аккумуляторы в цепочке должны иметь одинаковое состояние заряда и максимально близкие значения емкости.
Для новых установок рекомендуется использовать аккумуляторы не только одной марки, но и одной заводской партии. Однако практика показывает, что и в одной партии не бывает даже двух аккумуляторов с точно совпадающими характеристиками емкости, степени заряда и внутренних токов утечки. Тем более требование одинаковых характеристик недостижимо, когда нужно заменить поврежденный аккумулятор в уже эксплуатируемой батарее. |
Для новых установок рекомендуется использовать аккумуляторы не только одной марки, но и одной заводской партии. Однако практика показывает, что и в одной партии не бывает даже двух аккумуляторов с точно совпадающими характеристиками емкости, степени заряда и внутренних токов утечки. Тем более требование одинаковых характеристик недостижимо, когда нужно заменить поврежденный аккумулятор в уже эксплуатируемой батарее. | |
Незначительный разброс по степени заряженности новых аккумуляторов чаще всего сглаживается в процессе приработки за несколько циклов разряда и заряда. Но при значительном разбросе или различиях характеристик емкости разбаланс между отдельными АКБ массива со временем только возрастает.
Систематические перезаряды аккумуляторов с меньшей емкостью и возможные переполюсовки недозаряженных аккумуляторов при глубоких разрядах приводят к накоплению повреждений и выходу из строя отдельных аккумуляторов. В силу эффекта терморазгона даже один вышедший из строя аккумулятор может уничтожить весь массив батареи.
Активное выравнивание заряда аккумуляторов
Сгладить различия параметров аккумуляторов можно используя специальное устройство, называемое балансир заряда АКБ или нивелир разбаланса.
 | Нивелир разбаланса SBB2-12-A уравнивает состояние заряда двух последовательно соединенных 12В аккумуляторов или нескольких таких параллельных цепочек. Принцип работы основан на активном перераспределении заряда элементов батареи, при котором на соседних аккумуляторах устанавливаются практически одинаковые напряжения. Нивелир SBB2-12-A обеспечивает перераспределение заряда между аккумуляторами даже при отсутствии тока зарядного устройства. |
ВАЖНО! Применение балансиров заряда снижает риск возникновения разрушающих процессов, однако не может исправить уже серьезно поврежденный АКБ.
Физически устройство выравнивания заряда аккумуляторов представляет собой компактный электронный модуль, подключаемый к каждой паре последовательно соединенных элементов:
- для батареи номиналом 24В требуется один балансир заряда на цепочку (схема1).
- для батареи номиналом 48В требуется три балансира заряда на цепочку (схема 2).
Электропитание SBB осуществляется от самой батареи или от источника заряда. Собственное энергопотребление SBB мало и соизмеримо с потерями на саморазряд.
Эффективность нивелира SBB2-12-A принципиально выше, чем у других балансиров заряда, работа которых основана либо на шунтировании избыточной зарядной мощности (т.н. пассивные балансиры, создают прямые потери энергии), либо на селективном подзаряде элементов (выравнивание идет только во время заряда). Максимальный ток выравнивания SBB2-12-A – 5А, что превосходит возможности всех представленных на рынке альтернативных устройств.
Эффект применения балансира заряда :
1) Повышение общей надежности и увеличение срока службы аккумуляторов.
2) Увеличение энергоотдачи аккумуляторной батареи, т.к. при глубоких разрядах батарей более полно используется емкость всех аккумуляторов в последовательной цепи.
Балансиры SBB работают постоянно, поддерживая аккумуляторы в равновесном состоянии даже при выключенном зарядном устройстве.
Схема подключения
Схема подключения нивелира (балансира) на батарею 24В и 48В.
Ниже представлены схемы подключения нивелира заряда SBB2-12-A к свинцово-кислотным аккумуляторным аккумуляторам 12В в батареях номиналом 24В и 48В.
| |
Схема 1. Батарея 24В из двух АКБ 12В | Схема 2. Батарея 48В из четырех АКБ 12В |
Подключение нивелира (балансира) на батарею из нескольких параллельных цепочек.
Допускается работа одного балансира выравнивания заряда SBB на 2-3 параллельных цепочки аккумуляторов – если разбаланс невелик и нет превышения по максимальному току выравнивания. Отдельная балансировка каждой цепочки дает лучшие результаты за счет селективности корректирующего воздействия.
При использовании одного нивелира на несколько цепочек необходимо применять схему соединения аккумуляторов с шинами постоянного тока и соединением средних точек (Схема 3).
При использовании отдельного нивелира в каждой цепочке можно применять обычную схему соединения аккумуляторов (Схема 4).
|  |
Схема 3 Один балансир на несколько цепочек | Схема 4. Отдельные балансиры на каждую цепочку |
« назад